Сын досибирал Минск-Кроху, пытался завести но не вышло.
Глянул глазом — проблема в искре. искра есть но очень слабая. подкинул другую свечу и катушку — то же самое. Поменял конденсатор на автомобильный- то же самое.
Катострофически не хватает времени изучать принцип работы магнето. может ест затоки по этой теме, кто подскажет куда копать?
Магнит стоит новый, контакты тоже по виду практически новые, чистые, зазор в норме, короткого с виду в наковальне нет. Изначально он собрал как было собрано до нас, там провод на свет с подковы шёл на массу. При холодной обкатке (крутил перфоратором коленвал за болт магнита) магнит грелся (думаю из-за такого подключения)
Конечно электронное поставить было бы лучше всего, но опять же у меня на это в данный момент нет времени, а ребёнок сам не справиться. Пуст уж хоть ны обычном поездит для начала.
Неисправности конденсатора:
- обрыв выводов
- пробой
- плохие контакты корпуса конденсатора с массой и изолированного проводника с клеммой прерывателя
Эти неисправности определяют на приборе проверки зажигания (ППЗ) или же при помощи контрольной лампы. Контрольная лампа, соединенная последовательно с конденсатором и подключенная к сети переменного тока напряжением 220 В, не горит при исправном конденсаторе, но после отключения конденсатора от сети при шунтировании появляется искра. При обрыве в конденсаторе лампа не горит, а конденсатор не заряжается. При пробое конденсатора лампа горит. Поврежденный конденсатор заменяют.
Магнето — устройство и принцип действия
В 1887 году немецкий инженер и изобретатель Роберт Бош, владелец одноименной компании, разработал и запатентовал первую систему зажигания на основе магнето. Все началось с того, что один из клиентов компании заказал разработку системы зажигания для своего газового двигателя, и вскоре заказ был выполнен. Позже выявились некоторые недостатки, и устройство было доработано. В результате к 1890 году компания Robert Bosch GmbH уже выполняла крупные заказы на системы зажигания на принципе магнето, которые стали поступать отовсюду в огромном количестве.
Спустя семь лет, в 1897 году, устройство было в конце концов адаптировано и для транспортного средства, поскольку потребовалось разработать зажигание для трицикла De Dion Bouton. Так проблема зажигания для автомобильных двигателей внутреннего сгорания, работавших на высоких оборотах, была наконец решена. Еще через пять лет, в 1902 году, ученик Роберта Боша, Готтлоб Хонольд, усовершенствовал зажигание на магнето, добавив свечу зажигания, и таким образом сделал устройство универсальным.
Так что же такое магнето? Как оно устроено и работает? Все очень просто, как и все гениальное. Магнето представляет собой генератор переменного тока, в котором роль индуктора выполняет постоянный магнит, приводимый во вращение внешней силой. Магнитный ротор создает вращаясь переменный магнитный поток, который и наводит ЭДС в катушке статора.
Типичное магнето автомобильной системы зажигания содержит обмотки низкого и высокого напряжения. Обмотка низкого напряжения имеет в своей цепи прерыватель и конденсатор, а обмотка высокого напряжения соединена одним своим выводом с массой, и со свечей зажигания — другим своим выводом.
Общее П-образное ярмо, на которое намотаны катушки, представляет собой магнитопровод, в котором и возбуждается переменное магнитное поле посредством вращения постоянного магнита. Часто в качестве обмотки низкого напряжения используется часть витков обмотки высокого напряжения, подобно тому, как выполнены обмотки автотрансформаторов.
Когда магнит вращается, в обмотке низкого напряжения наводится ЭДС, но при этом обмотка накоротко замкнута механическим прерывателем, поэтому в ней возникает индукционный ток, вызванный изменяющимся магнитным потоком, пронизывающим сердечник, поскольку магнит пересекает его своими силовыми линиями. Изменение магнитного потока длится несколько миллисекунд, и в результате имеется замкнутая сама на себя катушка с током в несколько ампер.
В какой-то момент контакты прерывателя размыкаются, ток устремляется из обмотки в конденсатор, и начинаются гармонические колебания в образовавшемся колебательном контуре низкого напряжения, их частота составляет около 1 кГц. Поскольку контакты размыкаются быстро, менее чем за четверть периода колебаний контура первичной цепи, пробоя между контактами прерывателя не происходит, и только после размыкания контактов прерывателя, ЭДС в контуре низкого напряжения достигает амплитуды.
В этот момент на свече, подключенной к обмотке высокого напряжения, происходит искровой пробой, энергия конденсатора низковольтной цепи преобразуется в энергию переменного тока высоковольтной цепи, поскольку колебания в низковольтной цепи продолжаются, и горючая смесь в цилиндре успевает воспламениться.
Колебания длятся не более 1 миллисекунды, в силу значений индуктивности и емкости конструкции магнето, затем контакты прерывателя замыкаются вновь, и начинается очередной цикл нарастания тока в низковольтной цепи, шунтированной самой собой.
Таким образом мы видим, что магнето представляет собой магнитоэлектрическую машину, функция которой заключается в преобразовании механической энергии вращения магнитного ротора в электрическую энергию, в частности — в энергию высоковольтного разряда на свече зажигания. Сегодня еще можно встретить системы зажигания двигателей внутреннего сгорания на базе магнето.
Очевидно не каждый генератор можно отнести к магнето, поскольку к магнето относятся лишь те генераторы, которые возбуждаются от постоянных магнитов, и как правило соединенные с высоковольтным трансформатором системы зажигания двигателей внутреннего сгорания.
Бывает, что магнето обеспечивает не только зажигание, но и электроснабжение бортовой сети транспортного средства, однако чаще всего магнето питает только систему зажигания. Между тем, сегодня можно встретить на рынке генераторы на постоянных магнитах с несколькими генераторными катушками на статоре, такие генераторы подходят для мотоциклов, но в принципе они универсальны.
В некоторых случаях дополнительная обмотка, расположенная на сердечнике магнето, все же служит для генерации электричества для бортовой сети. Иногда магниты располагаются на маховике, который выполняет двойную функцию — возбуждение магнето и возбуждение генератора переменного тока. Такое гибридное устройство называется вообще-то «магдино» от сочетания слов «магнето» и «динамо».
Неисправности прерывателя:
- обгорание или окисление контактов
- замыкание изолированного контакта на корпус
- биение кулачка
- изменение зазора в контактах
- поломка пружины подвижного контакта
Окислению контактов способствует неисправность конденсатора. При необходимости контакты зачищают мелкой стеклянной шкуркой. Изношенные вольфрамовые контакты заменяют новыми. Нормальный зазор между контактами должен быть в пределах 0,2…0,25 мм. Дефектные усилительные пружины контактов заменяют новыми.
Особенности регулировки
Регулировка магнето осуществляется, если узел не может выполнять возложенные на него функции, при этом все элементы механизма целый. Настройка магнето производится путем измерения зазора между контактами прерывательного узла, при этом коленчатый вал мотора следует поворачивать за маховик. Вал проворачивается до того момента, пока расхождение контактов будет наибольшим. Отрегулируем зазор путем отпущения болта, фиксирующего контактную стойку и поворота стойку отверстий, которая установлена в прорези эксцентрика.
Когда зазор отрегулирован, необходимо протестировать механизм — это позволит определить правильность проведенного процесса. Если все сделали правильно, то сбоев в искрообразовании удастся избежать.
Источник
Неисправности трансформатора магнето:
- повреждение изоляции
- замыкание и обрывы обмоток, приводящие к нарушению искрообразования
- забоины и ржавчина на опорных поверхностях сердечника
Обрывы в обмотках проверяют при помощи контрольной лампы. При отсутствии наружных повреждений трансформатор магнето проверяют на бесперебойность искрообразования на стенде КИ-968.
Перед испытанием отремонтированного магнето проверяют правильность сборки, наличие и затяжку крепежных деталей, плавность вращения ротора и искрообразование при вращении от руки.
В собранном магнето проверяют и регулируют угол поворота ротора от нейтрального положения до момента размыкания контактов прерывателя, зазор между контактами прерывателя и усилие, передаваемое пружиной на контакты прерывателя. У магнето проверяют также бесперебойность искрообразования, состояние высоковольтной изоляции, правильность чередования искр и характеристику пускового ускорителя или муфты опережения зажигания.
Источник и распределитель тока – вот как можно назвать магнето. Соответствующие разновидности тока применяются внутри карбюраторных двигателей, чтобы горючая смесь получала зажигание. Фактически благодаря данному механизму механическая энергия преобразовывается в электрическую. Тракторное магнето часто идёт в комплекте с ДВС.
Интенсивность магнитного потока, который может быть создан ротором в магнитной цепи магнето, зависит от размеров магнето, остаточной магнитной индукции и коэрцитивной силы сплава, использованного для изготовления магнита.
В настоящее время магниты изготовляют из никельалюминие-вых сплавов (сплавы ЖНА), которые имеют высокую коэрцитивную силу. Коэрцитивная сила магнитов, изготовленных из сплавов ЖНА, в 8-10 раз выше, чем у магнитов, изготовленных из хромистой стали, и в 2-3 раза выше, чем у магнитов из кобальтовой стали.
В зависимости от числа искр, создаваемых магнето за один оборот, различают двух-, четырех- и одноискровые магнето.
На рис. 47 изображено двухискровое магнето для одноцилиндрового двигателя. На роторе 10 магнето находится сильный постоянный магнит 11. Магнит 11 ротора имеет полюсные наконечники 12, позволяющие получить минимальный зазор между ротором и сердечником и предохраняющие магнит от размагничивания. Полюсные наконечники магнита, а также сердечник с полюсными башмаками набирают из пластин электротехнической стали. Сердечник магнето помещен в корпус 1, выполненный из легкого сплава. На сердечнике имеется обмотка 2 с контактом 3 высокого напряжения.
Кулачковая муфта 9 жестко связана с осью ротора; изменение опережения зажигания производят вручную рычагом 6, которым можно повернуть диск прерывателя вместе с самим прерывателем. Конденсатор 7 помещают внутри корпуса магнето. Высокое напряжение снимают с токосъемного контакта 5.
Рис. 47. Устройство двухискрового магнето: 1-корпус; 2-обмотка; 3 — контакт; 4-крышка; 5 — токосъемный контакт; 6 — рычаг для регулирования опережения зажигания; 7 — конденсатор; 8 — корпус прерывателя; 9 — кулачковая муфта; 10 — ротор; 11 — постоянный магнит; 12 — полюсные наконечники ротора; 13 — полюсные башмаки сердечника
В магнето для одноцилиндрового двигателя кулачковая муфта имеет один выступ, а в магнето для двухцилиндрового двигателя — два выступа. Для искрообразования при этом используют оба импульса магнитного потока за один оборот ротора.
Ток высокого напряжения со вторичной обмотки двухискрового магнето подается через контактное кольцо распределителя к токораздаточному сегменту, а от него через скользящие контакты и провода высокого напряжения к свечам зажигания.
Муфта опережения зажигания. Магнето с муфтой опережения зажигания применяют на двигателях, работающих при переменных числах оборотов.
Муфта опережения зажигания состоит из ведущей обоймы 1 (рис. 48), неподвижно крепящейся к приводному валу двигателя, и ведомой шайбы 7, жестко соединенной с ротором магнето. В обойме на штифтах 5 размещены грузики 3. Каждый грузик состоит из двух частей, соединенных шарнирно на
оси 2. Пружины 4 фиксируют грузики в определенном положении. Каждая пружина закреплена на одной из составных частей грузика. Штифты 6 ведомой шайбы входят в отверстия на концах грузиков.
Во время работы двигателя вращение от приводного вала передается на ротор магнето через обойму, грузики и ведомую шайбу муфты.
При малых числах оборотов муфты центробежная сила грузиков мала, и они удерживаются пружинами 4. Ведущая обойма и ведомая шайба при этом вращаются без относительного смещения и изменения угла опережения зажигания.
С увеличением числа оборотов двигателя возрастает центробежная сила грузиков и они, преодолевая сопротивление пружин 4, поворачиваются на осях и смещают на некоторый угол ведомую шайбу относительно обоймы в сторону вращения.
Рис. 48. Муфта опережения зажигания: 1 — ведущая обойма; 2 — ось грузиков; 3 — грузики; 4 — пружины; 5 — штифты ведущей обоймы; 6 — штифты ведомой шайбы; 7 — ведомая шайба
Кулачковая муфта прерывателя также смещается, увеличивая угол опережения зажигания.
С уменьшением числа оборотов двигателя центробежная сила грузиков уменьшается и они под действием пружин 4 смещают ведомую шайбу в исходное положение, уменьшая угол опережения зажигания.
Читать про электрооборудование двигателей внутреннего сгорания…
Читать про все автомобили и транспортные средства
Как работает магнето
Схема устройства будет иметь следующее описание:
- Напротив башмаков магнитопроводов располагаются полюсные наконечники от ротора.
- Трансформаторный сердечник способствует тому, что силовые линии из магнитов начинают замыкаться.
- Когда во время вращения магнит находится в 90-градусном положении – главным элементом становится зазор между наконечниками, башмаками.
- Обязательно пересечений линий магнита с витками обмоток у трансформатора. Электродвижущая сила благодаря этому приобретает индукцию. Зажигание в процессах тоже используется.
ЭДС воздействует на устройство так, что при использовании замкнутых контактов у трансформаторного сердечника появляется магнитный поток. В результате размыкания цепи из первичной её разновидности ток исчезает. Из-за этого магнитное поле резко сокращается.
Индукция ЭДС до 25 000 Вольт происходит при использовании вторичной обмотки. Самоиндукция у ЭДС до 300 В появится, только если размыкать контакты от первичной обмотки. Цепь первичного типа пускает самоиндукционный тон, из-за которого магнитный ток исчезает медленнее. Для таких ситуаций характерно снижение ЭДС для вторичной цепи.
Детали часто начинают обгорать при появлении искр у контактов. Подключение конденсатора к конструкции проводится с целью избежать подобных последствий. Тогда между контактами искра отсутствует у магнето, что это – описано выше.
Ротор легко повернуть в положение на 90 градусов. После первичную цепь размыкают прерывателем. Такой момент получил название абриса магнето.
Схема устройства
Характерно расположение трансформаторной части внутри магнето на трактор. Деталь напрессовывается на валу, способствует созданию тока с высоким напряжением. Ещё одна важная часть конструкции – ротор, постоянно выполняющий функцию постоянного магнита с вращением на двух подшипниках. Кулачок закрепляется спереди на роторном вале. На задней части располагается так называемый поводок. Как работает каждая часть, понять просто.
Когда устройство магнето монтируется на двигателе, предполагается вхождение провода в паз шестерни. Корпус закрывается соответствующей крышкой, которую используют в качестве базы для установки контактов от прерывателя, выводов у обмоток трансфоратора. Легкосъёмной крышкой закрывается и сам прерыватель.
Принцип работы
При вращении ротора в сердечнике и щеках трансформатора создается переменный магнитный поток, благодаря чему в первичной обмотке трансформатора возникает переменный электрический ток низкого напряжения.
Ток первичной обмотки, создает переменный магнитный поток, пересекающий вторичную обмотку трансформатора. В тот момент, когда сила тока в первичной обмотке достигает наибольшего значения, кулачок размыкает контакты прерывателя. Цепь первичной обмотки разрывается, и магнитный поток исчезает.
При этом во вторичной обмотке трансформатора индуктируется ток высокого напряжения, который подается на свечу, в результате чего возникает искровой разряд между электродами. Чтобы уменьшить обгорание контактов прерывателя, при размыкании, параллельно контактам включен конденсатор.
Диагностика технического состояния
Диагностика проводится при выполнении следующего порядка действий:
- Первый этап – подведение высоковольтного кабеля к выводу с напряжением.
- На расстоянии около 0,5-0,7 сантиметров от корпуса устройства постоянно удерживается второй конец кабеля.
- Сохранение положения у провода. Далее идёт резкий поворот ротора по ходу вращения. Искра должна проскакивать в результате такого движения, если всё в порядке, магнето отрегулирован правильно. Если же искра отсутствует либо слишком слабая – велика вероятность того, что установка требует проведения проверки по неисправностям. При необходимости – проводится регулировка.
Часто встречающиеся неисправности, их ремонт
Вот лишь некоторые проблемы, с которыми владельцы магнето могут встречаться чаще всего:
- Сбои при искрообразовании. У такой ситуации несколько причин, способов устранения неполадки. К возможным проблемам относят: контакты подгорают, окисляются; регулировка по зазору нарушается; износилась рычажная подушка у прерывателя; конденсаторный элемент оказался пробитым. Если элемент вышел из строя, то проводится его полная замена. Когда проблема в зазорах – проводят их дополнительную регулировку. Контакты также меняются либо зачищаются полностью. Как настроить магнето, рассказывается и дальше.
- Полное отсутствие искры. Часто это происходит из-за того, что оборвалась трансформаторная проводка, произошло замыкание на массу либо пробился изоляционный слой, которым снабжается высоковольтный кабель. При появлении проблем с трансформатором узел подлежит обязательной замене. Можно устранить само замыкание либо поменять кабель, когда возникает пробой у изоляции.
- Пробитый конденсатор – наиболее вероятная причина появления слишком слабой искры. В этом случае деталь тоже подлежит обязательной замене.
Магнето. Устройство и работа. Виды и применение
Еще в 19 веке немецкий изобретатель Бош, который владел своей компанией, разработал на основе магнето первую схему системы зажигания. Со временем в конструкции выявлялись недостатки и производились доработки устройства. В итоге компания Бош в 1890 году уже выполняла большие заказы по изготовлению систем зажигания, основанных на этом принципе. Заказы поступали в большом количестве. В 1902 году ученик Боша – Хоннольд модернизировал эту конструкцию и сделал ее универсальной.
Магнето является устройством, служащим для преобразования вращательной энергии ротора в электрический ток, а именно, в разряд высокого напряжения на свечах зажигания в бензиновом моторе внутреннего сгорания. В настоящее время это устройство практически не используется, однако его еще можно увидеть на старых конструкциях автомобильных двигателей, или на пусковых двигателях тракторов.
Если сравнивать это устройство с генератором, то отличие состоит в том, что возбуждение происходит от постоянных магнитов. В зависимости от устройства, магнето может обеспечивать электричеством бортовую сеть транспортного средства, а не только запуск двигателя. Но обычно устройства такого вида используются только для воспламенения топливной смеси, так как их энергии недостаточно для других нужд.
Устройство и работа
Такая конструкция является генератором переменного тока. В нем в качестве индуктора выступает постоянный магнит, который приводится во вращение двигателем. Этот магнитный ротор при вращательном движении образует изменяемый магнитный поток, наводящий электродвижущую силу в катушке статора.
На автомобиле это устройство имеет две обмотки: высокого и низкого напряжения. Низковольтная обмотка соединена с конденсатором и контактным прерывателем, а высоковольтная обмотка соединяется одним концом на массу, а другим со свечей зажигания.
Катушки расположены на общем магнитопроводе П-образной формы, в котором происходит возбуждение переменного магнитного поля путем вращательного движения постоянного магнита. Обычно низковольтная обмотка является частью высоковольтной обмотки, по аналогии устройства автотрансформатора.
Работа магнето происходит следующим образом. При вращении постоянного магнита, в низковольтной обмотке образуется электродвижущая сила. Эта обмотка замкнута контактами прерывателя, вследствие чего в ней появляется индукционный ток, образованный переменным магнитным потоком в магнитопроводе, так как постоянный магнит пересекает его силовыми линиями. Магнитный поток изменяется в течение нескольких долей секунды, в результате в замкнутой катушке протекает большой ток.
В определенный момент прерыватель размыкает свои контакты, и ток обмотки устремляется в конденсатор, в результате чего образуются гармонические колебания низкого напряжения. Так как контакты размыкаются с большой скоростью, то между ними не происходит пробоя. Только после их размыкания электродвижущая сила в контуре достигает своей амплитуды.
В это мгновение на свече зажигания, которая подключена к высоковольтной обмотке, возникает пробой искры, энергия конденсатора переходит в переменный ток высокого напряжения, потому что в низковольтной цепи колебания продолжаются, и топливная смесь в двигателе успевает воспламениться.
Длительность колебаний составляет не больше одной миллисекунды, что обуславливается величиной емкости и индуктивности устройства. Далее прерыватель вновь замыкает свои контакты, и весь цикл повторяется.
В результате можно сказать, что магнето является магнитоэлектрической машиной, которая преобразует вращательное движение постоянного магнита в электрический ток. Некоторые исполнения этого устройства оснащены дополнительной обмоткой, находящейся на магнитопроводе. Эта обмотка служит для выработки электрического тока для бортовой сети мотоцикла или другого средства передвижения. Постоянные магниты, расположенные на маховике, могут исполнять две задачи – возбуждение высокого напряжения для искры на свече зажигания, и возбуждение генератора. Это комбинированное устройство называют «магдино».
Разновидности
Устройства делятся по нескольким факторам.
По направлению вращения:
- Левого.
- Правого.
По количеству искр за оборот ротора:
- 1-искровые.
- 2-искровые.
По габаритным размерам:
- Малогабаритные. Применяются в мототехнике, мопедах, лодочных моторах, гидроциклах.
- Нормальные. Используются в тракторных четырехцилиндровых моторах.
Где используется магнето
Чаще всего на лодочных моторах, мотоциклах, мопедах встречаются магдино, функционирующие вместе с регуляторами напряжения и выпрямительными мостами. Их мощность небольшая и может достигать всего 100 Вт, однако для работы габаритных фонарей или зарядки аккумуляторной батареи этого хватает. Достоинством магдино являются малый вес и небольшие габаритные размеры.
В бензиновых моторах магнето обычно использовались с давних времен, создавая искру в свече зажигания, в то время, когда аккумуляторы еще не были так распространены. В настоящее время такие конструкции до сих пор встречаются. Во время войны в немецких танках были установлены карбюраторные моторы, в которых использовали такую систему зажигания.
Самолетные поршневые моторы имеют две свечи на каждом цилиндре. Отдельная группа свечей работает от отдельного магнето – правая и левая группа подсоединены отдельно. Это дает возможность наиболее эффективно работать двигателю, а также повышает надежность работы системы зажигания.
Сообщества › Мотоблоки (и все что с ними связано) › Блог › Замена магнето у культивтора «Крот»
Доброго дня!
Недавно писал об исчезновении искры в культиваторе «Крот». Прозвучали советы по замене двигателя, зачем? Культиватор с 1991 года, ни разу не подвёл, ни разу не ломался… Процедура замены проста,
весь инструмент есть в комплекте
:
Сообщества › Мотоблоки (и все что с ними связано) › Блог › Замена магнето у культивтора «Крот»
Доброго дня!
Недавно писал об исчезновении искры в культиваторе «Крот». Прозвучали советы по замене двигателя, зачем? Культиватор с 1991 года, ни разу не подвёл, ни разу не ломался… Процедура замены проста,
весь инструмент есть в комплекте
: